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We have noted consistent structural similarities among unrelated
proteases. In comparison with other proteins of similar size, pro-
teases have smaller than average surface areas, smaller radii of
gyration, and higher Ca densities. These findings imply that pro-
teases are, as a group, more tightly packed than other proteins.
There are also notable differences in secondary structure content
between these two groups of proteins: proteases have fewer
helices and more loops. We speculate that both high packing
density and low a-helical content coevolved in proteases to avoid
autolysis. By using the structural parameters that seem to show
some separation between proteases and nonproteases, a neural
network has been trained to predict protease function with over
86% accuracy. Moreover, it is possible to identify proteases whose
folds were not represented during training. Similar structural
analyses may be useful for identifying other classes of proteins and
may be of great utility for categorizing the flood of structures soon
to flow from structural genomics initiatives.

The genome sequencing projects currently underway have
given birth to a new pursuit: determining the three-

dimensional structures of an organism’s proteome. This new
endeavor, dubbed ‘‘structural genomics,’’ has an initial goal of
solving the structures of proteins that have little or no sequence
identity to proteins of known structure so as to map out protein
fold space most efficiently and to provide modeling scaffolds for
proteins of biomedical interest (1–3). Structures solved to meet
this goal will include proteins of unknown function as has
recently been reported (4, 5). Deducing the functions of proteins
from their structures would be beneficial, because it could
suggest possible roles for a much larger group of homologous
proteins from other organisms.

Herein, we investigate whether a broad class of proteins of similar
function, but not necessarily similar fold or catalytic mechanism, has
distinguishing structural characteristics. We focus on the proteases,
a very well studied class of proteins. Before the development of
recombinant methods for protein expression, digestive enzymes
were the subjects of many early structural and mechanistic studies,
because they were easy to obtain in large quantities from natural
sources (6). Today, the database of protease structures has grown
to include a variety of molecules that play critical roles in many
biological processes ranging from viral replication to the develop-
ment and growth of an organism.

As with nearly all biological processes, protease activity must
be regulated tightly. Regulation is particularly important for
proteases, because all proteins, at some level, are their natural
substrates. Different mechanisms have arisen for protease reg-
ulation. These include inhibition by specific protease inhibitors
as well as synthesis as zymogens with covalently attached,
inhibitory prosegments (7). Proteases may also be restricted to
certain parts of the cell (e.g., the proteasome) or function only
under specific environmental conditions (e.g., low pH).

Regardless of the mechanism of regulation, under conditions
of optimal activity, all proteases must avoid inappropriate self-
cleavage. Because the current structural database contains hun-
dreds of protease structures from roughly a dozen evolutionarily

unrelated families, we can ask whether common mechanisms for
avoiding autolysis have coevolved in proteases as a whole.

Materials and Methods
Data Set Construction and Calculations. The nonprotease data set
for the statistical analysis was constructed from Hobohm and
Sander’s (8, 9) ‘‘pdb select’’ list of proteins with no more than
25% sequence identity and crystallographic resolution better
than 2.5 Å. Only structures of biologically active, monomeric
proteins were used. The structure selection criteria were the
same for the proteases except that the sequence identity cutoff
for proteases was 35% so as to include more examples. In both
cases, the molecular mass range was 14–54 kDa. The final sets
contained 36 protease and 154 nonprotease structures. The PDB
identifiers of the proteases are listed in the text. The nonpro-
teases were 153l, 16pk, 1a0p, 1a17, 1a26, 1a34, 1a6g, 1a8e, 1a9s,
1ad6, 1ads, 1ah7, 1ak0, 1ak1, 1ako, 1akz, 1alu, 1am7, 1amm,
1amx, 1anf, 1aoh, 1aol, 1aqb, 1arv, 1ash, 1asw, 1at0, 1atg, 1aua,
1auk, 1ax8, 1axn, 1azo, 1bc5, 1bd8, 1bg0, 1bgc, 1bgf, 1bjk, 1bkb,
1bol, 1bp1, 1brt, 1bv1, 1bxw, 1byb, 1byq, 1c25, 1c3d, 1ceo, 1cex,
1cfb, 1cfr, 1chd, 1ckn, 1cnv, 1cpo, 1csh, 1csn, 1dad, 1dhr, 1dhs,
1dhy, 1edg, 1fdr, 1fmt, 1fts, 1g3p, 1gky, 1gpl, 1grj, 1gso, 1ha1,
1hxn, 1idk, 1ihp, 1inp, 1ips, 1ixh, 1juk, 1lba, 1lcl, 1lit, 1lki, 1maz,
1mml, 1mpg, 1mrj, 1mrp, 1msk, 1mup, 1nar, 1nif, 1nkr, 1np4,
1npk, 1ois, 1opr, 1oyc, 1pda, 1pgs, 1phc, 1phm, 1pmi, 1pne, 1poc,
1pot, 1pta, 1pty, 1pud, 1qnf, 1qtq, 1ra9, 1rcf, 1rec, 1rhs, 1rss, 1rsy,
1sbp, 1tca, 1tde, 1tfr, 1thv, 1tib, 1tml, 1uae, 1uxy, 1v39, 1vhh,
1vid, 1vjs, 1wab, 1zin, 2abk, 2baa, 2cba, 2cyp, 2dri, 2end, 2gar,
2hft, 2i1b, 2liv, 2pia, 2plc, 2pth, 2sns, 2thi, 3nll, 3seb, 3sil, 4xis,
and 6cel.

Surface areas were calculated by using the method of Lee and
Richards (10) as implemented by the program CALC-SURFACE
(11). A default probe radius of 1.4 Å was used, except when
calculating surface roughness. In that case, radii of 1.25, 1.5, 1.75,
and 2.0 Å were used. In-house utility programs were used to
calculate radii of gyration, contact order (12), and interresidue
Ca–Ca contacts. Cas within 5.5 Å of one another were considered
to be in close proximity. Contacts between residues at least three
positions apart in sequence were considered. Secondary struc-
ture assignments were made by using the DSSP program (13).

Neural Network Architecture. The network used for prediction had
a two-layer architecture with two hidden nodes in the first layer
and a single output. Training was performed with a standard
feed-forward, error back-propagation algorithm (14). Weights in
the network were determined by using on-line learning with
sum-of-squares error and a gradient-descent learning rule. A
logistic activation function was used in all nodes.
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The inputs used to train the neural network consisted of 10
data fields and a target value. The target value was set at 0.9 for
true examples and at 0.1 for false examples. The input feature set
included the percentage loop, the percentage helix, the percent-
age sheet, the average loop length, the average molecular mass
per residue, the average number of contacts, the surface area per
molecular mass, the contact order, the radius of gyration, and a
zinc Boolean (1 if a structure contains Zn and 0 if it does not).

For the neural net testing, the nonprotease set was enlarged
to 878 members. The examples in the false training and test sets
were fixed, and no proteins in the false examples had greater than
45% sequence identity to any protein in the training set. Each of
the original 36 proteases was tested by using a neural net that was
trained on the remaining 35 proteases. For every experiment, the
net was trained and tested five times, and the test results were
averaged over all runs. For the prediction of protease classes, the
protease example set was enlarged to 71 members with the
highest homology between two members of different classes
being 23.5% (resulting from one distantly related aminopepti-
daseycarboxypeptidase pair). Each class was removed individu-
ally and tested against the remaining proteases.

PSI-BLAST. The protease sequences used in the class experiment
described above were used to develop sequence profiles to query
the nonredundant sequence database with PSI-BLAST (15); 10
iterations were performed on each of the proteases individually.
An EXPECT value of 1.0 was used for each iteration.

Results and Discussion
Two representative sets of protein structures (16, 17) were
assembled, one containing 36 proteases and another containing
154 nonproteases of similar size. Proteases from 10 structural
families were represented, including the trypsin-like serine pro-
teases from three distantly related subfamilies (1dan, 1elt, 5gds,
1try, 1hne, 1cgh; 1exf, 1arb; 1sgp, 2alp), the subtilisin-like serine
proteases (1gci, 2prk), cysteine proteases (1cjl, 1cv8, 3pbh, 8pch),
aspartic proteinases (1bxo, 1eag, 1htr, 2asi), metzincins (1hfc,
1iab, 1iag, 1kuh, 1smp), thermolysin-like metalloproteases
(1bqb, 1ezm, 1lml), aminopeptidases (1igb, 1lam, 1xjo), car-
boxypeptidases (1obr, 2ctc), and three proteases with unrelated
folds (1ac5, 1lay, 1mat).

Fig. 1A shows surface area (10) plotted against molecular mass
for the two sets of proteins, with a line fit to the nonprotease data
points. Strikingly, 81% of the proteases fall below this line. These
results are in accordance with a trend noted 8 years ago by one
of us (18) with an independent set of 72 representative protein
structures (19).

What physical attributes account for the smaller surface areas
seen in proteases? Factors such as a smoother surface, tighter
interatomic packing, or a more spherically symmetric shape
could all contribute to the observed segregation of protease
surface areas. The smoothness of protein surfaces may be
calculated by determining the dependence of the surface area on
the radius of the probe sphere used to map out the surface (20).
The roughness or fractal dimension (D) of a surface is given by
the relationship:

D 5 2 2
dlogAs

dlogR
, [1]

where R is the probe radius and As is the accessible surface area.
A perfectly smooth surface will not depend on the probe size and
will thus have a fractal dimension of two. Proteases and non-
proteases were found to have very similar fractal dimensions
(D 5 2.17 in both cases). Thus, overt surface smoothness does
not explain the smaller surface areas of proteases.

To assess how the shapes of proteases compare with those of
nonproteases, the radius of gyration of each protein was com-

puted (Fig. 1B). This measure is sensitive to the mass distribution
of a protein. Proteases, particularly those smaller than 30 kDa,
fall along the lower edge of the distribution, suggesting that they
may be as compact andyor as spherically symmetrical as physi-
cally possible.

Residue packing was analyzed by computing the number of
close contacts (# 5.5 Å) between Ca carbons. The proteases tend
to have more contacts per residue than the nonproteases (Fig. 2),
implying that the polypeptide backbone, on average, passes
closer to itself in the proteases than in the nonproteases. The
higher number of contacts per residue may be explained, in part,
by proteases having slightly smaller amino acids on average. The
average residue mass for the nonproteases in our data set is
111.2 6 3.6 Da compared with 108.2 6 4.8 Da for the proteases.
Neither Ca contacts per residue nor surface area to molecular
mass ratios are specific to a structural family; related family
members (e.g., the various trypsin-like serine proteases) had
widely scattered values for both of these measures.

Fig. 1. (A) Molecular mass vs. surface area for proteases (r) and nonpro-
teases (ƒ). The linear fit for the nonproteases gives a correlation coefficient (R)
of 0.95. The average surface area to molecular mass ratios for the proteases
and nonproteases are 0.39 6 0.03 Å2yDa and 0.43 6 0.05 Å2yDa, respectively.
(B) Radius of gyration versus molecular mass. R (nonproteases) 5 0.96.
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There is a striking difference between the secondary structure
composition of the proteases and the nonproteases. Proteases
have a significantly lower helical content: no protease has more
than 43% of its residues in helices (Fig. 3A). Also, the fraction
of residues in coil regions is significantly higher in the proteases
than in the nonproteases (Fig. 3B). Proteases also tend to have
longer loops (7.0 6 1.8 residues as opposed to 6.1 6 1.6 residues
for the nonproteases).

Overall, it seems that proteases with diverse structures and
catalytic mechanisms have subtle differences in several struc-
tural parameters from other proteins. The fact that these struc-
tural differences exist begs the question of whether they are due
to the function of proteases. One obvious motive for lowering
surface area, either through higher packing density or through
a more spherically symmetric shape, would be to avoid auto-
degradation; i.e., to provide as few susceptible sites for cleavage
as possible. Although substrate specificity may, to a large extent,
prevent autolysis, at high local concentration, cleavage may be
more difficult to avoid.

One might imagine that a protease of very broad specificity,
of high activity, or with environmental exposure to other pro-
teases would have the strongest need to avoid autolysis and thus
would be packed most efficiently. Although there does not seem
to be any correlation between specificity or activity and packing
efficiency among the proteases in our data set, we do observe
that proteases from unicellular organisms have lower surface
area to molecular mass ratios and higher Ca densities than
proteases from multicellular organisms. This observation agrees
with Perona and Craik’s (21) hypothesis that, in the chymotryp-
sin family of proteases, the higher order eukaryotic proteases
tend to be more specialized. The authors speculate that organ-
isms with specialized cell types require a diversity of protease
functions and that their accompanying large genomes allow for
protease gene duplication and subsequent specialization. Uni-
cellular organisms, by contrast, have smaller, more efficient
genomes and may produce only a small set of more general-
purpose proteases. Organisms with smaller genomes and simpler
lifestyles may also lack other means of regulating protease
activity, such as specialized inhibitors, and may thus have to rely
more on intrinsic means of resisting autolysis.

It is likely that the relatively low a-helical content of the
proteases has also arisen as a mechanism to avoid autolysis. In
general, proteolytic nick sites rarely occur in elements of sec-
ondary structure and are particularly rare in b-sheets (22, 23).
Hubbard and coworkers (22, 24) have argued that an a-helix,
being a local element of secondary structure, can unwind to
accommodate a protease substrate binding site. Because a
b-strand is already in an extended conformation and usually
hydrogen bonded to one or two other strands, a more dramatic
unfolding event would have to take place to expose the backbone
of such a segment sufficiently.

We were surprised to discover that proteases have a higher
than average loop content and longer than average loops. This
result is an apparent contradiction to the antiautolysis argument
made above. Evidence from both NMR and x-ray crystallo-
graphic studies of proteins indicates that loops are the most
flexible regions of a protein. Furthermore, loops are usually
targets in limited proteolysis experiments (24, 25) and make this
technique useful for mapping protein topology and domain
structure. However, as Hubbard and colleagues (26) have
pointed out, not all loops are proteolytic targets. For example,
loops that pack well against the protein surface will not be good
candidates for proteolysis. Although there is no direct correla-
tion between surface area to molecular mass or close Ca

contactsyresidue and the fraction of residues found in loop
regions, the proteases are globally better packed as judged by
both of these criteria. We suspect that the high loop content of
proteases most likely reflects the bias against helical structure.
As discussed above, b-structure has the advantage of making

Fig. 2. Number of Ca–Ca contacts within 5.5 Å of one another per residue for
the nonprotease (u) data set and the protease (■) data set. The average
contacts per residue are 0.81 6 0.08 for the proteases and 0.75 6 0.07 for the
nonproteases.

Fig. 3. Secondary structure comparisons between the nonproteases (u) and
proteases (■). (A) Percentage helix. The averages are 24.1 6 11.4 (proteases)
and 36.0 6 18.3 (nonproteases). (B) Percentage loop. The averages are
44.3 6 5.1 (proteases) and 37.6 6 8.0 (nonproteases). Categories are upper
limits of bins.
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more hydrogen bond cross-links between sequentially distant
residues and may serve to anchor down the chain so as to prevent
unraveling and proteolysis. By traversing the extent of a globular
protein by using extended strands, the polypeptide chain will
need to make more reversals of direction. Such a protein will
thus have a greater fraction of residues within loops. In fact, such
a trend is evident in our data set of nonproteases. The predom-
inantly b-proteins (those with less than 10% a-helical structure)
contain 42 6 7% of their residues in loops, whereas the
predominantly a-proteins contain 30 6 10% of their residues in
loops. (The average sizes of the proteins in these sets are 231
residues for the a-proteins and 193 residues for the b-proteins.)

Although we cannot say for certain that the noted structural
differences of proteases are related to function, we can none-
theless use these differences to classify structures as potential
proteases. Given the overlapping distributions seen in Figs. 1–3
for the proteases and nonproteases, one structural difference by
itself is clearly not sufficient to distinguish between them.
However, when multiple properties are plotted simultaneously,
the proteases are seen to cluster (Fig. 4), suggesting that it may
be possible to predict protease function by using these and
additional parameters.

In an attempt to recognize the cumulative significance of these
structural differences, a neural network was trained by using the
parameters that potentially show some discrimination between
proteases and nonproteases. Each protease was, in turn, used as
the sole true test example for a network trained on the remaining
35 proteases. In 31 of 36 cases (86%), the network was able to
identify correctly the remaining protease as such. The mean
performance on the 258 false examples tested was 87%, showing
that the number of nonproteases erroneously called proteases is
also small. Interestingly, several of the false positive structures
were from the O-glycosidase family. Glycosidases may be subject
to similar evolutionary constraints, because they may show
cross-reactivity for peptide bonds.

A far more stringent test of the predictive power of the
parameters we have identified would be to demonstrate that we
can correctly identify novel structures as proteases. To address
this issue, the network was retrained eight times, each time
leaving out one family of proteases from training and then testing
on this family (Table 1). The eight families have little sequence
identity to each other, different folds, and different catalytic
mechanisms. Therefore, this experiment simulates a prediction
made on a novel structure. Although the prediction of two
classes of proteases (aspartic and cysteine) tested poorly, the

Fig. 4. A combination of three metrics for the proteases (F) and nonproteases (E) shown in stereo.

Table 1. Breakdown of neural net results when eight individual protease classes are tested

Protease class

Proteases Nonproteases

Correct Incorrect Correct Incorrect

Aminopeptidases 3 0 211 47
Aspartic proteases 4 9 212 46
Carboxypeptidases 4 0 207 51
Cysteine proteases 0 9 209 49
Metzincins 7 2 207 51
Thermolysin-like metalloproteases 5 0 208 50
Subtilisin-like serine proteases 8 0 207 51
Trypsin-like serine proteases 19 0 209 49

Each class is removed completely from the training set and then tested by using the neural network. Listed are
the individual classes and the number of proteases and nonproteases the network assigned correctly and
incorrectly.
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performance on the remaining classes was remarkably good.
Most notably, when the largest subset of proteases, the trypsin-
like serine proteases, is removed from the training set, the
resulting network correctly identifies all of them as proteases.

The performance on the nonproteases in this experiment is
slightly worse (80–82%) than in the training experiment that
used all of the protease families simultaneously (87%). This
result suggests that leaving out some information degrades
performance on the false examples. In an actual structural
genomics application, the network would be trained with all
available information, even including protease structures of high
sequence identity to one another. We would expect the perfor-
mance on the nonproteases in this case to meet or exceed the
87% level.

Another measure of the success of this structure-based
method is in comparison to sequence-based methods. We used
PSI-BLAST, an iterative sequence database search tool (15), to try
and detect distant homologies between different protease
classes. Only 3 of the 36 proteases had hits with an expectation
value (the number of expected random hits given the query
sequence and database size) lower than 1.0 between protease
classes, and only 1 of these had an expectation value of less than
0.1. Thus, PSI-BLAST is far less likely than our method to identify
a novel protease structure. Although sequence-based methods
are clearly powerful for detecting remote homologies resulting

from divergent evolution, our results suggest that structure-
based methods can detect convergent evolution. Both methods
should probably be tested when classifying novel protein structures.

In summary, we have successfully trained a neural network to
use global structural characteristics to predict protease function.
We expect that similar approaches will work for other classes of
proteins: our initial neural network predictive results with
DNA-binding proteins have been encouraging. Along with the
parameters already used, additional parameters, such as elec-
trostatic charge distribution, predicted isoelectric point, and
surface hydrophobicity, could be added to refine the prediction
of other classes of proteins. It is also possible that some
parameters, such as surface roughness, although not helpful in
discriminating proteases from nonproteases, could be useful in
distinguishing other classes. Methods such as the one described
herein potentially could lead to the structural classification of a
whole series of proteins and serve a primary role in structural
genomics.
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